Warm Up

Write the equation of the line that is parallel to $3 x-5 y=-2$ and goes through the point (5, -1).

Section P. 3

Functions and their graphs

Functions

Def. A function is a relationship where no two points have the same x-coordinate.

- Each x-coordinate is associate with at most one y-coordinate
- The graph passes the vertical line test

Domain \rightarrow all possible values of x where the function is defined.

Range \rightarrow all possible values that the function attains

Ex: Find the domain and range.

A) $y=\sqrt{x-4}+2$
B) $y=\ln (x-1)$

Domain:
$4 \leq x$ $\times 24$
Range:

$$
x \geq 2 \quad[2, \infty)
$$

Domain:

$$
(1, \infty) \rightarrow x>1
$$

Range:
$\mathbb{R}(-\infty, \infty)$

Def: A piecewise function is a function whose equation depends of the value of x where it is being evaluated.

Ex: Graph $f(x)= \begin{cases}x+2 & x<0 \\ x-2 & x \geq 0\end{cases}$

The Absolute Value Function is a Piecewise function.

$$
f(x)=|x|=\left\{\begin{array}{c}
x \quad x \geq 0 \\
-x \quad x<0
\end{array}\right.
$$

Inverse Functions

- Def. A function is invertible if no two points have the same y-coordinate.
- Each y corresponds to at most one x
- The graph passes the horizontal line test
- To find the inverse, switch x and y, and then solve for y.

You may not find the equation for the inverse, even if the function is invertible

Ex: Let $f(x)=\frac{1}{2 x-5}$. Find $f^{-1}(x)$

$$
\begin{aligned}
& y=\frac{1}{2 x-5} \\
&(2 y-5)(x)=\left(\frac{1}{2 y-5}\right) 2 y-5 \\
& \frac{(2 y-5) x}{x}=\frac{1}{x} \quad y \frac{f y}{x}=\frac{1}{x}+5 \\
& 2 y=\frac{1}{x} \\
&+5
\end{aligned}
$$

Domain of $f \leftrightarrow \rightarrow$ Range of f^{-1}

Range of $f \leftarrow \rightarrow$ Domain of f^{-1}
(distance as a function of time) $\rightarrow d=f(t)$
becomes
(time as a function of distance) $\rightarrow t=f^{-1}(d)$

Ex: Let $C=f(q)$ be the cost, in dollars, for Dunder Mifflin to produce q boxes of paper. Using correct units, explain the meaning of $f^{-1}(25)=1000$.

Even and Odd Functions

- A function is odd if, for all x in the domain of f

$$
f(-x)=-f(x)
$$

- A function is even if, for all x in the domain of f $f(-x)=f(x)$

Ex: Determine if $f(x)=\frac{1}{2} x^{3}$ is even or odd.

$$
\begin{aligned}
& f(-x)=\frac{1}{2}(-x)^{3} \\
& f(-x)=-\frac{1}{2} x^{3}
\end{aligned}
$$

Ex: Determine if $f(x)=3 x^{2}-1$ is even or odd.

$$
\begin{aligned}
& f(-x)=3(-x)^{2}-1 \\
& f(-x)=3 x^{2}-1=f(x) \quad \text { EVEN }
\end{aligned}
$$

Homework

- P. 27 \# 13-29 odd
- P. 349 \# 23 - 29 odd

